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Abstract

Raytracing has many benefits as technique for simulating light while

rendering a scene, resulting in many effects like reflections, refractions,

shadows, anti-aliasing, soft-shadows, ambient occlusion, and global il-

lumination being achieved as a result of the techniques similarity to

lights behavior rather than by deliberate addition as is done in non-

raytraced real-time renderers. However, this technique comes at a

great runtime cost. In order to make runtime raytracing feasible, it’s

necessary to optimize some of the more expensive components of a

Monte-Carlo raytracer. The inclusion of a BVH (bounding volume hi-

erarchy) reduces the runtime cost of hit detection, however, the cost of

building the BVH and transferring it to the GPU (graphics processing

unit) is expensive, due to the lack of parallelization available on the

CPU compared to the GPU. To balance realistic rendering techniques

with runtime performance, this paper aims to implement a method of

building the BVH on the GPU [7]. This project aims to construct a

GPU-based Real-time Raytracer which assembles and uses a Bounding

Volume Hierarchy in a Vulkan Compute Shader. The image produced

from the shader is then rendered to the screen.

1 Introduction

The field of computer graphics focuses on creating images with computers. It’s

involved in movies, video games, computer screens and digital art.

Real-time rendering is a field in computer graphics which focuses on producing

and modifying images in real-time, that is, as a program is running.

Rendering is the process of generating an image from a model. It’s used in

films, TV shows, architectural programs, and games. These images, renderings,

can be used to create entertainment, visualizations, and simulations. A common

need is relatively accurate real-world effects appearing in the rendering. One

of the most challenging effects to emulate is light. Computer graphics techniques

involve many algorithms for reproducing the complex effects of light that color the
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world. Many of these algorithms have long been too slow to be used in real-time

applications. However, hardware improvements and faster algorithms have made

some of these techniques feasible in real-time. Raytracing simulates the behavior of

light by assume it behaviors like a geometric ray and working backwards; instead

of sending light rays from a light-emitting surface which eventually arrive at a

camera, rays are sent from the camera and eventually arrive at a light-emitting

surface.

In conventional, real-time rendering, a number of methods are used to approx-

imate the effects of light on a scene in order to pseudo-realistically display a digi-

tized world on a computer screen. These methods are effective and fast but require

individual implementation and consideration. Another technique, Raytracing, was

previously not feasible in real-time due to it’s demanding requirements on hard-

ware and lack of fast algorithms in software. However, as hardware and software

techniques has improved, real-time rendering applications, such as video games,

have begun utilizing Raytracing to simplify their rendering pipelines, reduce game

sizes, and capture complex effects of light.

Raytracing involves casting rays into a scene to simulate the linear motion

of waves or particles. In the case of this paper, light. To approximate light’s

behavior in the scene, a Monte-Carlo summation is used to approximate The

Rendering Equation [4]. Monte-Carlo refers to the process of approximating an

integral result from mathematics by using a finite number of averaged samples.

Raytracing can produce photo-realistic images but the cost of simulating mil-

lions of rays bouncing around a scene, which is necessary to produce the image, it

a very expensive process computationally. Creating a raytracer for use in real-time

requires consideration of the bottle-necks associated with the algorithm. One of

these spaces is its linear scalability in poly-count. In order to cast a ray into a

scene, the algorithm involves determining when the ray intersects with triangles.

This requires checking each triangle to find the closest intersection.

As light, often represented in raytracers by a geometric ray, travels through a

scene, it potentially interacts with some surface. In this case, depending on the

properties of the surface, the ray is bounced off the surface. These surfaces are

often represented by primitive shapes, such as triangles and spheres.
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When determining which primitive shape, if any, a ray hits, every primitive

shape must be checked (or ruled out in some way). This is because we not only

need to know if we hit something, but also what was the closest primitive hit. This

creates a runtime cost per ray with depth of 1 of O(n), where n is the number of

primitives. This cost is true regardless of if a hit is found while looping or if a ray

hits nothing.

However, data structures have been used to reduce the complexity of finding

the closest hit primitive. This is done by correlating the space a primitive occupies

with it’s location in a tree-like structure and only testing for intersections upon a

small group of primitives. This is called a Bounding Volume Hierarchy [8].

This project aims to implement, in a real-time raytracer, an improvement to

reduce linearity of this search utilizing a Bounding Volume Hierarchy. This tree-

like structure enables faster intersection calculation by computing intersections

only for a subset of the triangles in the scene. From a search perspective, this

structure enables intersection checking to function similar to binary search. By

moving down the tree on a particular path, large groups of triangles are avoided,

resulting in speed improvements.

However, a BVH must be constructed (similar to sorting a list for use in binary

search). In a real-time application where triangle primitives are being transformed

each frame, the BVH must either be built each frame, or modified each frame after

initial construction.

This project aims to utilize a BVH in a GPU-accelerated raytracer and avoid

expensive construction costs through GPU parallelization. This real-time ray-

tracer as the main rendering pipeline for a custom game engine, in the interest

of further developing my own understanding of game engines, so some additional

capability such as being able to move primitives, adding primitives, and removing

primitives in real-time are also included.

To construct a BVH, in a simple way, a bounding volume is selected, often an

axis-aligned bounding rectangular prism. The initial bounding volume is created

such that it contains all the primitives in the scene. This volume is the root of the

tree. Then the primitives are sub-divided into a number of some groups. Each

groups becomes a child of the root node by constructing a bounding volume con-
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taining all their respective primitives. This repeats to some degree of granularity

(for instance, such that every leaf node contains a single primitive).

To traverse a BVH, a ray intersection algorithm for bounding volumes can

be used. If the ray hits, then it might hit something contained within and thus

attempts to hit the children of the volume. Once the ray hits a bounding volume

that has no children, the ray attempts to hit any primitives contained within the

volume. It can still miss at this point.

In a theoretical case, each time the ray traverses one level down the tree, it

removes half of the remaining hit-able primitives from it’s search. This is an

incredible performance boost, but comes at the cost of needing to construct the

BVH.

Another topic in this paper are Morton codes, also known as a Morton curve,

Z-order curve, or Lebesgue curve. It allows for sorting any multi-dimensional,

integral point into a 1-dimensional integral by interleaving the bits of the com-

ponents of the multi-dimensional point. This also created an implicit and useful

ordering of higher dimensional space that can be used in lower-dimensional data

structures like arrays, sorting algorithms, hash-tables, and more.

This proposal will review past works in the field or raytracing and bounding

volume hierarchies as well as list resources used to learn and study this topic. Next,

a review of the development of the raytracer so far, then a detailed plan for the

implementation of a BVH including a list a project specific success criteria which

should be used to judge whether the implementation of the BVH is successful.

Lastly, a conclusion discussing the proposal in summary.

2 Related Works

Many works have contributed to the space of raytracing.

Texts such as Shirley, Black and Hollasch [9] [10] [11] as well as Pharr, Jakob,

and Humphreys [8] provided much of the information about raytracing, the pro-

cesses involved, as well as optimizations and improvements. In these texts, the

authors discuss the nature of a raytracer and detail how to create on that runs on

the CPU. Some algorithms from these texts, like the triangle intersection algorithm
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2 are from these texts. Pharr, Jakob, and Humphrey’s text, Physically-Based Ray-

tracing: From Theory to Implementation, creates an SAH-based HLBVH, which

is similar to the goal of this project, however the SAH-based HLBVH isn’t as quick

to build as what this proposal will explore.

Meister et al. [6] and Garanzha and Loop [2] improve raytracing performance

by organizing rays to reduce execution divergence and capitalize on locality and

directional similarity between rays. This ray-reordering method packages infor-

mation about groups of rays into packets and deploys them to the gpu to cast

rays using packet information. This can improve performance in a number of

ways compared to the method used in this paper: smaller work tasks without

shared dependencies allow the GPU to run as many as possible without manual

intervention, packets allow for rendering some regions more than others to make

sure areas of high complexity are well rendered while areas of low complexity are

quickly rendered, and this also allows for rending multiple rays per pixel at once.

The use of Morton Codes in [2] inspired the application in BVH construction.

Much work has specifically gone into the implementation of acceleration struc-

tures like a BVH.

Bauszat, Eisemann, and Magnor [1], prioritize the BVH’s memory footprint

by reducing its per-node size to just 2 bits, which they find to be the smallest

possible representation that doesn’t produce empty space deadlocks. As is often

the case, decreasing memory utilization increases runtime cost. Knowing this

minimum does create an algorithmic target, much in the same way that knowing

the minimal runtime for BVH construction does (O(n log2 n)).

Guo, Zhang, and Zhou [3] work on an improvement to the proposed algo-

rithm in this paper, which is based on Pantaleoni and Luebke [7], by balancing

between the topological performance gains with construction time. This approach

constructs the BVH from the bottom-up using clusters. They first create the leaf

node for all primitives by grouping together primitives based on their Surface Area

Heuristic cost. The higher order tree connections are deduced similarly. This im-

proves bottom-up construction time, which creates long chain of nodes by adding

primitives on each level until no primitives remain.

Pantaleoni and Luebke [7] offer an improvement to Lauterbach et al. [5]
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by using aspects of spacial locality inherent in Morton codes alongside a pro-

cess of Compress-Sort-Decompress proposed for BVH construction by Garanzha

and Loop [2]. These papers establish the Linear Bounding Volume Heirarchy

(LBVH) and, its improvement, the Heirarchical Linear Bounding Volume Heirar-

chy (HLBVH), which will be the main topic of this proposal and are further

detailed in Section 4.

3 Development Progress

The project has thus far been accomplished using C++, the Vulkan graphics API,

the OpenGL Mathematics Library (GLM), and the Graphics Library FrameWork

(GLFW). This section will highlight some of the current capabilities and features

already developed as well as challenges along the way.

3.1 Encapsulating Vulkan API to classes

The Vulkan API is C-based and involves the use of POD (Plain-old Data) Objects

to pass configuration information as well as some object primitives used to main-

tain memory references across the CPU and GPU. Many of these API calls are

used frequently and were abstracted to classes to more easily and quickly develop

the application.

Notable examples of this include the Buffer class, which maintains VkBuffer

and VkDeviceMemory as well as some affiliated information such as memory flags

used in the creation of the buffer and the number of elements and element size.

Utility functions are also provided to allow mapping and unmapping memory to

the GPU or flushing CPU-side buffer content to the GPU.

Another example is the Device class, which collects information about the

machine, selects which device (GPU usually) to use and maintains a reference used

in most calls to the Vulkan API. It also maintains the command pools, surface

used in the window to display resulting images, and command queues.
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3.2 Support for Triangles and Spheres

Most conventional renderers use exclusively triangles. This makes rendering spheres

somewhat costly, as what can be described as a point and a radius becomes easily

more than 20 triangles. This is due to the need to increase poly-count to cre-

ate the appearance of curvature. Conventional renderers are highly optimized for

rendering flat triangles, so objects are decomposed into triangles.

However, in a raytracer, the only expense based on the primitive is the intersec-

tion algorithm and the memory used. In both cases, spheres outperform triangles.

However, not every model can be decomposed into spheres, so both triangles and

spheres are supported.

3.3 Sphere Intersection Algorithm

This sphere intersection algorithm [9] takes a sphere and a ray suspected of inter-

secting as well as a hit interval (Min and Max) and an object to record useful

intersection information if an intersection does occur.

A Sphere can be described with the following formula:

x2 + y2 + z2 = r2

if the center is at the origin, or as

(x− cx)2 + (y − cy)2 + (z − cz)2 = r2

if the center is at a point C (cx, cy, cz). Here, r describes it’s radius and P (x, y,

z) are a point on the surface on the sphere. This equation can be used to compute

whether a point lays upon the sphere’s surface. The same equation in a vectorized

form is as follows:

(P − C) · (P − C) = r2

If the left side is less than r2, P is inside the sphere. If greater than, P is outside

the sphere. And if equal, P is on the sphere. If we presume an intersection occurs,

then we can define P as a function of the ray:

P (t) = A+ tb
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Algorithm 1: sphereIntersect()
Input: Ray R, Sphere S, float Min; minimum distance along ray to be

considered an intersection, Max; maximum distance along ray to

be considered an intersection, H; struct containing data about an

intersection if one does occur

Output: True if an intersection occured, False otherwise

1 vec3 oc = R.origin - S.center; /* A− C */

2 float a = dot(R.direction, R.direction); /* b · b */

3 float halfB = dot(oc, R.direction); /* b · (A− C) */

4 float c = dot(oc, oc)- (s.radius * s.radius); /* (A− C) · (A− C)− r2 */

5 float underRadical = (halfB * halfB) - (a * c);

6 if underRadical < 0 then

/* if not 0 or positive, no roots */

7 return False;

8 float radical = sqrt(underRadical);

9 float root = (-halfB - radical) / a;

10 if root < Min or root > Max then

11 root = (-halfB + radical) / a;

12 if root < Min or root > Max then

13 return False; /* a hit would occur, but outside hit interval */

/* record hit information in H */

14 return True;

where A is the origin of the ray, and b is the direction of the ray. Transforming

the sphere equation before we get:

(A+ tb− C) · (A+ tb− C) = r2

Further simplifying, we get the polynomial:

(b · b)t2 + (2b · (A− C))t+ (A− C) · (A− C)− r2 = 0

Applying the quadratic formula, if no roots are found, no intersection occurs. If

one root is found, the ray is tangential to the sphere and intersects. If two roots

are found, the ray passes through the sphere and intersects.
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3.4 Triangle Intersection Algorithm

Algorithm 2: triangleIntersect()
Input: Ray R, Triangle T , float Min; minimum distance along ray to be

considered an intersection, Max; maximum distance along ray to

be considered an intersection, H; struct containing data about an

intersection if one does occur

Output: True if an intersection occured, False otherwise

1 vec3 u = T .v1 - T .v0;

2 vec3 v = T .v2 - T .v0; /* Compute triangle direction vectors u and v */

3 vec3 normal = cross(u, v);

4 vec3 nNormal = normalize(normal);

5 float D = dot(nNormal, T .v0);

6 vec3 w = normal / dot(normal, normal);

7 float denom = dot(nNormal, R.direction);

8 if |denom| < 0.0001 then

9 return False;

10 float t = (D - dot(nNormal, R.origin)) / denom;

11 if t < Min or t > Max then

12 return False;

13 vec3 intersectionPoint = R.origin + t * R.direction;

14 vec3 pointOnTrianglePlane = intersectionPoint - T .v0;

15 float a = dot(w, cross(pointOnTrianglePlane, v));

16 float b = dot(w, cross(u, pointOnTrianglePlane));

17 if a < 0 or b < 0 or a + b > 1 then

18 return False;

/* record hit information in H */

19 return True;

This triangle intersection algorithm [10] takes a triangle and a ray suspected

of intersecting as well as a hit interval (Min and Max) and an object to record

useful intersection information if an intersection does occur.
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This algorithm uses a secondary formulation of a triangle which has many

advantages. A triangle can be defined as three vertices, but it can also be defined

as a point and two direction vectors. The point Q and the 2 direction vectors u

and v have many beneficial properties that are used here:

• vertices exist at Q, Q + u, and Q + v

• u and v span R2

• u and v are formed by subtracting the Q vertex from the other two vertices.

This means Q + au + bv yields a point on the triangle if a >= 0, b >= 0,

and a + b < 1

While useful, the render pipeline consumes triangles as a collection of 3 vertices,

so u and v are formed during the intersection algorithm.

First, a plane is formed to see if an intersection occurs with the plane. A Plane

is defined by:

Ax+By + Cz = D

it can also be defined by a normal vector and position vector:

n · v = D

where n is a vector perpendicular to the plane and v is a position on the plane.

With a point on the plane, as in Section 3.3, we can define this point as an

intersection point:

n · (A+ tb) = D

where A is the ray origin, b is the ray’s direction vector, and t is a multiplier on

the direction vector used to determine if the intersection is within the hit interval.

Rearranging to solve for t:

t =
D − n · A

n · b
So we can compute t easily, but this is for a plane, not a triangle. If we hit the

triangle, it is hit at A+tb, but first we need to know if the point A+tb is actually in

the triangle. Let’s suppose we have a point H on the plane of a triangle composed

of the point Q and direction vectors u and v. Because u and v span R2, they can

be used as basis vectors to uniquely identify any point on the plane of the triangle.

H = Q+ au+ bv
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If we can solve for a and b, we can test if H exists on the triangle. Removing the

points to just focus on the origin:

h = H −Q = au+ bv

h has is used but cancels some things. To quickly show those cases first:

u× h = u× (au+ bv) = a(u× u) + b(u× v)

u× u = 0 => u× h = b(u× v)

Similarly:

v × h = v × (au+ bv) = a(v × u) + b(v × v)

v × v = 0 => v × h = a(v × u)

We can solve for a and b, as crossing u and v with h cancels out a and b respectively.

The plane’s normal n is defined by u× v, so:

n · (v × h) = n · a(v × u)

n · (u× h) = n · b(u× v)

solving for a and b:

a =
n · (v × h)

n · (v × u)

b =
n · (u× h)

n · (u× v)

We need to swap the cross products of the a formula so that have a common

denominator:

a =
n · (h× v)

n · (u× v)

Now create a vector w defined as:

w =
n

n · (u× v)
=

n

n · n

Then

a = w · (h× v)

b = w · (u× h)

If a + b > 1 or if either a or b is < 0, H is not inside the triangle. Interestingly,

the same algorithm can be used for a Quadrilateral, but instead of checking for

a > 0, b > 0, a+ b < 1, one can check for 0 < a < 1 and 0 < b < 1.

11



3.5 Gamma Correction

This project employed Gamma correction to distribute color into spaces humans

have better ability to distinguish colors. Perceptions of brightness for humans

allows more distinction in darker tones than in lighter ones. Linearly distributing

the brightness of the image would mean nuance in brighter areas would be lost due

to our perceptions. To account for this, gamma compression is used; specifically:

Vout = AV γ
in

where A = 1, γ = 1/2, and Vout represents the resulting colors of each pixel in the

image and Vin represents the colors of each pixel produced by the raytracer.

3.6 Game Engine Organization and Scene Tools

This raytracer allows for objects to be added, removed, and modified while ren-

dering is occurring. The states of all objects in the scene are maintained on the

CPU and transferred to the GPU every frame.

Scenes maintain a list of GameObjects which maintain their individual model,

transform, and components list. GameObjects can be added, modified, and re-

moved in real-time from scenes. GameObjects can load models from .obj files

which are transformed into triangles in memory. A Material, containing informa-

tion about how to render the object, is attached to each GameObject.

3.7 Render Pipeline

Three stages are used to generate the resulting image. The first applies model

transforms to triangles and spheres from model space into world space.

A ∗M = W

where M is a 4x1 column vector representing a vertex in model space, W is a

4x1 column vector representing a vertex in world space, and A is a 4x4 matrix

encoding transformations (translation, rotation, and scale) for a particular object

12



into a 4x4 matrix of the following form:

a b c tx

d e f ty

g h i tz

0 0 0 1


Here, tx, ty, and tz store translation information for the axes x, y, and z re-

spectively. The constant 1 at index (3, 3) causes these translation values to be

additively applied. Variables a − i are a particular chosen rotation convention

and encoded both rotation and scale. In this project, Tait-Bryan Angles with axis

order Y, X, Z are used. Thus the variables are defined as follows:

c1 = cos(rotation.y) s1 = sin(rotation.y)

c2 = cos(rotation.x) s2 = sin(rotation.x)

c3 = cos(rotation.z) s3 = sin(rotation.z)

a = scale.x(c1c3 + s1s2s3)

b = scale.y(c3s1s2 − c1s3)

c = scale.z(c2s1)

d = scale.x(c2s3)

e = scale.y(c2c3)

f = scale.z(−s2)

g = scale.x(c1s2s3 − c3s1

h = scale.y(c1c3s2 + s1s3)

i = scale.z(c1c2)

This matrix, A, is known as a 3D affine transformation via homogeneous coordi-

nates. After transforming each vertex in this way, the triangles and spheres are

ready for the raytracer. This stage identifies pixel locations, generates an initial

ray based on camera location, and checks to see if the ray collides with anything
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Algorithm 3: getRay()
Input: vec2 xy; coordinates identifying the pixel

Output: Ray

1 vec3 rayOrigin = cameraPosition;

2 vec3 pixelSample = (pixel00Location + (xy.x * pixelDeltaU) + (xy.y *

pixelDeltaV));

/* The pixel00Location, pixelDeltaU, and pixelDeltaV variables are

similar to Q, u, and v as described in the Triangle Intersection

algorithm. However, here, the vectors pixelDeltaU and pixelDeltaV

are of length 1-pixel on the projected image surface in width and

height respectively */

3 vec3 rayDirection = pixelSample - rayOrigin;

4 return Ray(rayOrigin, normalize(rayDirection))

in the scene. If it doesn’t collide with a triangle or sphere, it collides with the

background (usually black (0, 0, 0, 1)). If it does collide with something besides

the background, emitted light from the collided surface and the color of the col-

lided surface are recorded, and the ray is scattered according to the properties of

the surface it has collided with. Currently, only diffuse materials are handled by

the scatter function. After getting a color for the ray, the color is added to the

current color from the output image for that pixel, and then stored in that output

image for that pixel. A pixel’s color is a 4x1 vector (r, g, b, a) stored as 4 32-bit

floating point numbers. When interpretted to deduce the pixel color in the final

image later, these values are expected to be in the range 0 < c < 1 where c is

any component of the color vector. Using 32-bit floats instead of 8-bit integers

allows for a larger range of colors to be expressed but also allows accumulation

beyond the 0 to 1 range, which is useful considering the Monte-Carlo nature of

the raytracer. This raytracer stage can produce an image with color values far in

excess of this range due to repeated usage (ie, sending more than 1 rays per pixel)

or due to initial brightness values being outside the range. This issue is corrected

in the next and final stage. The raytracing stage can be run multiple times, each

time firing a new ray for each pixel into the scene.
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Algorithm 4: rayColor()
Input: Ray R

Output: vec3 Color

1 HitRecord rec;

2 vec3 color = vec3(0);

3 vec3 globalAttenuation = vec3(1);

4 vec3 unitDir = normalize(R.direction);

5 Ray curr = Ray(R.origin, unitDir);

6 for uint i = 0; i < MAXRAYTRACEDEPTH; i++ do

7 if !sceneHit(curr, rec) then

8 color = color + (BACKGROUNDCOLOR * globalAttentuation);

9 break;

10 vec3 attenuation;

11 vec3 emmitedColor = emmitted(rec);

12 color = color + (emmittedColor * globalAttenuation);

13 bool scattered = scatter(curr, rec, attenuation, curr);

/* scatter() sets attenuation and curr to new values */

14 globalAttenuation *= attenuation;

15 if !scattered then

16 break;

17 return color ;

After generated a raytraced image, it needs to be rendered to the screen. This

is done by placing a triangle to entirely take up vulkan’s canonical view volume

and mapping the raytraced-image’s pixels to locations on the triangle. The vertex

shader creates the triangle and the fragment shader returns image pixel values

instead of any color associated with this triangle. [12]

The fragment shader does a few corrections as well. First, it divides the

raytraced-image’s pixel values by the total number of rays fired. This avoids

the issue of going outside the interprettable range due to firing multiple rays. To

handle the case of initial brightness values being too large, the colors are clamped

into the required range. Also in this stage, gamma correction, as described in
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section 3.5, is applied. In this stage, the alpha component for every color is set

to 1, as the raytracer doesn’t need to use the alpha channel for it’s usual purpose

and is free to use it in other ways.

3.8 Challenges So Far

The main challenge has been converting CPU raytracer code to work on the GPU.

A number of factors become problems when moving to the GPU, especially random

sources and synchronization.

Many randomization engines rely on a single-threaded environment, or at least

involve a mutex, for generation. This poses a problem on the GPU and likely

explains why few tools offer random generation tools on the GPU. For this project,

a random seed was needed for each pixel as rays were cast repeatedly. To achieve

this, each frame was given a seed, then the alpha channel of the resulting image

stored a bias value created based on the seed after use. This bias value was used to

modify the seed per pixel in further iterations, creating a seed for each pixel. This

choice results in a poor source of randomness for the simulation, which is likely at

fault for some of the minor discrepencies that can be seen when comparing to a

CPU-based algorithm (see Section 3.9).

With a CPU-based raytracer, synchronization isn’t a problem in many cases.

But on the GPU, everything is run at once, making it difficult to write some

types of functions. The ray color algorithm 4 uses additional variables, as the

CPU-based version used recursion (specifically tail-recursion), which isn’t allowed

by GLSL. Another way synchronization becomes an issue is when parallelizing

operations that have dependencies. By the nature of the Command Buffers used

by Vulkan, tasks are started in an order but may complete in any order, unless

synchronization tools, provided by Vulkan, are used to prevent starting of tasks

before the completion of others.

3.9 Output Examples

Figure 1 and Figure 2 show a comparison of the output from a two raytracers,

one running primarily on the CPU and another running the raytracing portion of
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Figure 1: GPU Raytraced Figure 2: CPU Raytraced

the program on the GPU. Both 800x800 images were produced with 128 rays per

pixel, with each ray being able to bounce up to 25 times.

CPU Raytracer GPU Raytracer

621.186 seconds 1.287 seconds

Table 1: Runtime Comparison of CPU and GPU raytracers rendering a single

frame of the Cornell Box

The images are produced in vastly different times with comparable quality.

Comparing the time to generate a frame as the number of rays per pixel changes

yields the graph in Figure 3. This chart shows approximately a 500 times increase

in performance, though notably, the image in Figure 1 does appear slightly more

noisy. This is likely a result of the poor randomization engine mentioned in Section

3.8.

4 Proposed Approach

To improve upon this raytracer, several things can be improved: A BRDF (Bi-

directional Reflectance Distribution Function) can be used to reduce the amount

of depth (how many times rays can bounce without hitting a light source or the
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Figure 3: Number of Multiples faster the GPU renders the Cornell Box compared

to the CPU with varying rays per pixel

background) and the number of rays needed per pixel, a swapchain can be used

to avoid waiting for each frame and all associated operations to be finished (this

would allow one frame to be ray tracing while another clears the previous result

and another loads in engine primitives), rays can be dispatched in a more orderly

way to correlate with the space they may interact with, and a de-noising algorithm

can be applied after the image has been rendered to smooth out the spotty coloring

allowing for a reduced number of rays to be cast per pixel.

For this project, the improvement that will be worked on will be the introduc-

tion of a BVH (Bounding Volume Hierarchy).

For this proposal, a HLBVH (Hierarchical Linear Bounding Volume Hierarchy)

will be implemented as described in work by Pantaleoni and Luebke [7] which

extends and improves upon work by Lauterbach et al. [5] as well as Garanzha and

Loop [2]. The approach propose modifying the construction problem into a sorting

problem, by first performing dimensionality reduction using Morton Codes. Then

sorting the primitives by these codes in two ways: a top-level primitive sorting step

and a bottom-level sorting step. This top-level step utilizes the nature of Morton

codes to associated groups of primitives with neighboring primitives. Finally, a
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process is used to deduce hierarchy of the BVH from the sorted Morton codes.

For the first step, each primitive is contained within an axis-aligned bounding

box (AABB). The entire scene is also enclosed into an AABB. The N primitive-

containing AABB in 3D space is reduced to a Morton code by interleaving a

quantized version (quantized by a 2k × 2k × 2k lattice, which produce a 3k-bit

Morton code) of its Barycenter’s 3 coordinates together.

Algorithm 5: quantize()
Input: float x, float sMin; scene min for this axis, float sMax; scene max

for this axis, uint k; number of bits to use

Output: uint quantizedCoordinate

1 uint output = 0;

2 float min = sMin;

3 float max = sMax;

4 for ; k != 0; k -= 1 do

5 float mid = (max - min) / 2.0;

6 if x > mid then

7 output |= 0b1 « (k - 1);

8 min = mid;

9 else

10 max = mid;

11 return output ;

After quantization of each axis of a barycenter using Algorithm 5, the bits can

be shifted to interleave all three values into a single int.

Then, the Morton codes are run-length encoded based on their higher level

3m-bits. This is because every group of 3 bits in a Morton code identifies, in

3D space, an Octant. The next 3 bits identifies an Octant within the higher level

Octant. m is a parameter to this process and must be smaller than k. The unique,

encoded run values (the highest 3m-bits of unique Morton codes) and their indices

are then used in a 3m-bit radix sort with the run values as keys and the indices

as values. After sorting, the lengths of sorted consecutive runs are used in an

exclusive scan algorithm to compute the offsets in the unsorted run values. These
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offsets are used to decode indices of run values, which are decodes once more to

yield Morton codes sorted by their upper 3m bits.

Figure 4: Octant

Figure 4 shows how the 3m-bit groups can be used to identify locations. The

location of the primitive is described with successive levels of specificity as each

group of 3-bits further specify it’s region, creating a natural, tree-like structure.

Sorting happens to, then, group them into Octants in a sequence to easily paral-

lelize the tree-construction process.

To sort the remaining aspects of the Morton codes, an odd-even sort is used

as it is fast in highly parallel environments.

Lastly, to form the BVH, the sorted Morton codes are used. The algorithm

looks to p-bits of the Morton codes, and attempts to form all the nodes of a level

given the (p−1)-bit-level was previously computed. The binary split occurs based

on the first element in the segment of sorted Morton codes with at bit position

3k− p to have a 1. All nodes before this within the segment are in the left and all

nodes after this within the segment are in the right. These left and right groups

are then the segments for the next level. Special cases, such as when a segment’s

Morton codes contain only 0s or 1s at bit position p are marked as they can be

simplified later.

The resulting tree produced can then be flattened into an array, depth-first, so

it may be easily traversed later during raytracing.
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Figure 5: sub-tree emission process

For traversal, a stack and a few values can be used to keep track of where

to look next. This algorithm is described in pseudo-code in Algorithm 6. The

closest hit still needs to be found, so an exhaustive search must be done, but if a

node isn’t hit during traversal, then any primitives within itself or its children can

safely be ignored. When a node is hit, if it is a leaf node, then it’s primitives can

be checked for hits. Any hits found decrease the max range of the search, further

eliminating future nodes as the search continues. If it is not a leaf node, then one

child is added to the stack while the other is searched. This continues until the

stack is empty, at which point, the closest hit, the primitive involved, and any

other information have been collected and are ready to be used to continue the

raytracing process.

4.1 Implementation Plan

To implement this, portions of this algorithm will be created as independent

shaders, tested, then integrated in a test environment. After confirming correct

behavior, a duplicate of the current raytracing shader will be created and modified

to traverse this BVH rather than loop through all primitives to find hit targets.

Compute shaders for constructing Axis-Aligned Bounding Boxes, converting
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Algorithm 6: BVHIntersect()
Input: Ray r, HitRecord rec

Output: bool; true if hit, false otherwise

/* Presume an tree-embedded array of BVH nodes nodes exists */

1 uint stack[100];

2 uint toVisitOffset = 0;

3 uint currentNodeIndex = 0;

4 bool hit = false;

5 float min = 0.001;

6 float max = FLOAT_MAX;

7 for ; true; do

8 Node node = nodes[currentNodeIndex];

9 if AABB_ray_intersect(node.bounds, ray) then

10 if node.hasPrimitives then

11 for int i = 0; i < node.numPrimitives; i++ do

12 if Intersect(primitives[node.primitiveOffset + i], r, rec,

min, max) then

13 hit = true; /* rec and max are updated if hits occur */

14 if toVisitOffset == 0 then

15 break;

16 currentNodeIndex = stack[–toVisitOffset];

17 else

18 stack[toVisitOffset++] = currentNodeIndex + 1;

19 currentNodeIndex = node.secondChildOffset;

20 else

21 if toVisitOffset == 0 then

22 break;

23 currentNodeIndex = stack[–toVisitOffset];

24 return hit ;
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Planned Date of Accomplishment Task

October 20 Morton Code transformation implemented in shader and tested

October 30 Top-level sorting step implemented in shader and tested

November 5 Bottom-level sorting step implemented in shader and tested

November 12 BVH construction on the GPU complete in shaders and tested

November 20 Raytracer traversing BVH and measure performance characteristics

December 1 Present Defense document to Committee

December 4-12 Project Defense to Committee

Table 2: Schedule for Project

Axis-Aligned Bounding Box Barycenter to Morton Codes, sorting Morton Codes,

emitting the tree hierarchy and flattening the tree hierarchy will be created. These

will be individually tested and then integrated into the render pipeline.

To evaluate success, two factors should be used:

1. Tests validating the construction of a BVH as described in a basic scene

containing a few primitives

2. Improved runtimes for high-poly scenes compared to the current raytracer

5 Conclusion

This proposal describes the current work that’s been done to create a GPU-

accelerated raytracer and proposes an improvement by creating a BVH to traverse

for each frame, constructed on the GPU. The improvement should exponentially

decrease the runtime cost of raytracing, particularly in scenes with a large amount

of input geometry. Parallelizing the construction of the BVH on the GPU should

minimize the construction time and only have negative runtime implications for

very trivial scenes.
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