
University of Nebraska at Omaha

Thesis-Equivalent Project Defense

Achieving Real-Time Raytracing

with a GPU-constructed Bounding

Volume Hierarchy

Alex Wissing

Department of Computer Science

Supervisory Committee:

Brian Ricks

Victor Winter

Dora Velcsov

Abstract

Raytracing has many benefits as technique for simulating light while

rendering a scene, resulting in many effects like reflections, refractions,

shadows, anti-aliasing, soft-shadows, ambient occlusion, and global il-

lumination being achieved as a result of the techniques similarity to

lights behavior rather than by deliberate addition as is done in non-

raytraced real-time renderers. However, this technique comes at a

great runtime cost. In order to make runtime raytracing feasible, it’s

necessary to optimize some of the more expensive components of a

Monte-Carlo raytracer. The inclusion of a BVH (bounding volume hi-

erarchy) reduces the runtime cost of hit detection, however, the cost of

building the BVH and transferring it to the GPU (graphics processing

unit) is expensive, due to the lack of parallelization available on the

CPU compared to the GPU. To balance realistic rendering techniques

with runtime performance, this paper aims to implement a method of

building the BVH on the GPU [16]. This project aims to construct a

GPU-based Real-time Raytracer which assembles and uses a Bounding

Volume Hierarchy in a Vulkan Compute Shader. The image produced

from the shader is then rendered to the screen.

1 Introduction

The field of computer graphics focuses on creating images with computers. It’s

involved in movies, video games, computer screens and digital art.

Real-time rendering is a field in computer graphics which focuses on producing

and modifying images in real-time, that is, as a program is running.

Rendering is the process of generating an image from a model. It’s used in

films, TV shows, architectural programs, and games. These images, renderings,

can be used to create entertainment, visualizations, and simulations. A common

need is relatively accurate real-world effects appearing in the rendering. One

of the most challenging effects to emulate is light. Computer graphics techniques

involve many algorithms for reproducing the complex effects of light that color the

1

world. Many of these algorithms have long been too slow to be used in real-time

applications. However, hardware improvements and faster algorithms have made

some of these techniques feasible in real-time. Raytracing simulates the behavior of

light by assume it behaviors like a geometric ray and working backwards; instead

of sending light rays from a light-emitting surface which eventually arrive at a

camera, rays are sent from the camera and eventually arrive at a light-emitting

surface.

In conventional, real-time rendering, a number of methods are used to approx-

imate the effects of light on a scene in order to pseudo-realistically display a digi-

tized world on a computer screen. These methods are effective and fast but require

individual implementation and consideration. Another technique, Raytracing, was

previously not feasible in real-time due to it’s demanding requirements on hard-

ware and lack of fast algorithms in software. However, as hardware and software

techniques has improved, real-time rendering applications, such as video games,

have begun utilizing Raytracing to simplify their rendering pipelines, reduce game

sizes, and capture complex effects of light.

Raytracing involves casting rays into a scene to simulate the linear motion

of waves or particles. In the case of this paper, light. To approximate light’s

behavior in the scene, a Monte-Carlo summation is used to approximate The

Rendering Equation [9]. Monte-Carlo refers to the process of approximating an

integral result from mathematics by using a finite number of averaged samples.

Raytracing can produce photo-realistic images but the cost of simulating mil-

lions of rays bouncing around a scene, which is necessary to produce the image, it

a very expensive process computationally. Creating a raytracer for use in real-time

requires consideration of the bottle-necks associated with the algorithm. One of

these spaces is its linear scalability in poly-count. In order to cast a ray into a

scene, the algorithm involves determining when the ray intersects with triangles.

This requires checking each triangle to find the closest intersection.

As light, often represented in raytracers by a geometric ray, travels through a

scene, it potentially interacts with some surface. In this case, depending on the

properties of the surface, the ray is bounced off the surface. These surfaces are

often represented by primitive shapes, such as triangles and spheres.

2

When determining which primitive shape, if any, a ray hits, every primitive

shape must be checked (or ruled out in some way). This is because we not only

need to know if we hit something, but also what was the closest primitive hit. This

creates a runtime cost per ray with depth of 1 of O(n), where n is the number of

primitives. This cost is true regardless of if a hit is found while looping or if a ray

hits nothing.

However, data structures have been used to reduce the complexity of finding

the closest hit primitive. This is done by correlating the space a primitive occupies

with it’s location in a tree-like structure and only testing for intersections upon a

small group of primitives. This is called a Bounding Volume Hierarchy [18].

This project aims to implement, in a real-time raytracer, an improvement to

reduce linearity of this search utilizing a Bounding Volume Hierarchy. This tree-

like structure enables faster intersection calculation by computing intersections

only for a subset of the triangles in the scene. From a search perspective, this

structure enables intersection checking to function similar to binary search. By

moving down the tree on a particular path, large groups of triangles are avoided,

resulting in speed improvements.

However, a BVH must be constructed (similar to sorting a list for use in binary

search). In a real-time application where triangle primitives are being transformed

each frame, the BVH must either be built each frame, or modified each frame after

initial construction.

This project aims to utilize a BVH in a GPU-accelerated raytracer and avoid

expensive construction costs through GPU parallelization. This real-time ray-

tracer as the main rendering pipeline for a custom game engine, in the interest

of further developing my own understanding of game engines, so some additional

capability such as being able to move primitives, adding primitives, and removing

primitives in real-time are also included.

To construct a BVH, in a simple way, a bounding volume is selected, often an

axis-aligned bounding rectangular prism. The initial bounding volume is created

such that it contains all the primitives in the scene. This volume is the root of the

tree. Then the primitives are sub-divided into a number of some groups. Each

groups becomes a child of the root node by constructing a bounding volume con-

3

taining all their respective primitives. This repeats to some degree of granularity

(for instance, such that every leaf node contains a single primitive).

To traverse a BVH, a ray intersection algorithm for bounding volumes can

be used. If the ray hits, then it might hit something contained within and thus

attempts to hit the children of the volume. Once the ray hits a bounding volume

that has no children, the ray attempts to hit any primitives contained within the

volume. It can still miss at this point.

In a theoretical case, each time the ray traverses one level down the tree, it

removes half of the remaining hit-able primitives from it’s search. This is an

incredible performance boost, but comes at the cost of needing to construct the

BVH.

Another topic in this paper are Morton codes, also known as a Morton curve,

Z-order curve, or Lebesgue curve. It allows for sorting any multi-dimensional,

integral point into a 1-dimensional integral by interleaving the bits of the com-

ponents of the multi-dimensional point. This also created an implicit and useful

ordering of higher dimensional space that can be used in lower-dimensional data

structures like arrays, sorting algorithms, hash-tables, and more.

This defense will review past works in the field or raytracing and bounding

volume hierarchies as well as list resources used to learn and study this topic.

Next, a review of the development of the raytracer before implementing the BVH,

then a detailed explanation of how the BVH was implemented and a results sec-

tion describing the measured improvement over the non-BVH version. Lastly, a

conclusion discussing the defense in summary.

2 Related Works

Many works have contributed to the space of raytracing.

Texts such as Shirley, Black and Hollasch [19] [20] [21] as well as Pharr, Jakob,

and Humphreys [18] provided much of the information about raytracing, the pro-

cesses involved, as well as optimizations and improvements. In these texts, the

authors discuss the nature of a raytracer and detail how to create on that runs on

the CPU. Some algorithms from these texts, like the triangle intersection algorithm

4

2 are from these texts. Pharr, Jakob, and Humphrey’s text, Physically-Based Ray-

tracing: From Theory to Implementation, creates an SAH-based HLBVH, which

is similar to the goal of this project, however the SAH-based HLBVH isn’t as quick

to build as what this project will utilize.

Meister et al. [15] and Garanzha and Loop [6] improve raytracing performance

by organizing rays to reduce execution divergence and capitalize on locality and

directional similarity between rays. This ray-reordering method packages infor-

mation about groups of rays into packets and deploys them to the gpu to cast

rays using packet information. This can improve performance in a number of

ways compared to the method used in this paper: smaller work tasks without

shared dependencies allow the GPU to run as many as possible without manual

intervention, packets allow for rendering some regions more than others to make

sure areas of high complexity are well rendered while areas of low complexity are

quickly rendered, and this also allows for rending multiple rays per pixel at once.

The use of Morton Codes in [6] inspired the application in BVH construction.

Much work has specifically gone into the implementation of acceleration struc-

tures like a BVH.

Bauszat, Eisemann, and Magnor [2], prioritize the BVH’s memory footprint

by reducing its per-node size to just 2 bits, which they find to be the smallest

possible representation that doesn’t produce empty space deadlocks. As is often

the case, decreasing memory utilization increases runtime cost. Knowing this

minimum does create an algorithmic target, much in the same way that knowing

the minimal runtime for BVH construction does (O(n log2 n)).

Guo, Zhang, and Zhou [7] work on an improvement to the proposed algorithm

in this paper, which is based on Pantaleoni and Luebke [16], by balancing be-

tween the topological performance gains with construction time. This approach

constructs the BVH from the bottom-up using clusters. They first create the leaf

node for all primitives by grouping together primitives based on their Surface Area

Heuristic cost. The higher order tree connections are deduced similarly. This im-

proves bottom-up construction time, which creates long chain of nodes by adding

primitives on each level until no primitives remain.

Pantaleoni and Luebke [16] offer an improvement to Lauterbach et al. [13]

5

by using aspects of spacial locality inherent in Morton codes alongside a pro-

cess of Compress-Sort-Decompress proposed for BVH construction by Garanzha

and Loop [6]. These papers establish the Linear Bounding Volume Heirarchy

(LBVH) and, its improvement, the Heirarchical Linear Bounding Volume Heirar-

chy (HLBVH), which will be the main topic of this project and are further detailed

in Section 4.

3 Development Progress

The project has thus far been accomplished using C++, the Vulkan graphics API,

the OpenGL Mathematics Library (GLM), and the Graphics Library FrameWork

(GLFW). This section will highlight some of the current capabilities and features

already developed as well as challenges along the way.

3.1 Encapsulating Vulkan API to classes

The Vulkan API is C-based and involves the use of POD (Plain-old Data) Objects

to pass configuration information as well as some object primitives used to main-

tain memory references across the CPU and GPU. Many of these API calls are

used frequently and were abstracted to classes to more easily and quickly develop

the application.

Notable examples of this include the Buffer class, which maintains VkBuffer

and VkDeviceMemory as well as some affiliated information such as memory flags

used in the creation of the buffer and the number of elements and element size.

Utility functions are also provided to allow mapping and unmapping memory to

the GPU or flushing CPU-side buffer content to the GPU.

Another example is the Device class, which collects information about the

machine, selects which device (GPU usually) to use and maintains a reference used

in most calls to the Vulkan API. It also maintains the command pools, surface

used in the window to display resulting images, and command queues.

6

3.2 Support for Triangles and Spheres

Most conventional renderers use exclusively triangles. This makes rendering spheres

somewhat costly, as what can be described as a point and a radius becomes easily

more than 20 triangles. This is due to the need to increase poly-count to cre-

ate the appearance of curvature. Conventional renderers are highly optimized for

rendering flat triangles, so objects are decomposed into triangles.

However, in a raytracer, the only expense based on the primitive is the intersec-

tion algorithm and the memory used. In both cases, spheres outperform triangles.

However, not every model can be decomposed into spheres, so both triangles and

spheres are supported.

3.3 Sphere Intersection Algorithm

This sphere intersection algorithm [19] takes a sphere and a ray suspected of

intersecting as well as a hit interval (Min and Max) and an object to record

useful intersection information if an intersection does occur.

A Sphere can be described with the following formula:

x2 + y2 + z2 = r2

if the center is at the origin, or as

(x− cx)2 + (y − cy)2 + (z − cz)2 = r2

if the center is at a point C (cx, cy, cz). Here, r describes it’s radius and P (x, y,

z) are a point on the surface on the sphere. This equation can be used to compute

whether a point lays upon the sphere’s surface. The same equation in a vectorized

form is as follows:

(P − C) · (P − C) = r2

If the left side is less than r2, P is inside the sphere. If greater than, P is outside

the sphere. And if equal, P is on the sphere. If we presume an intersection occurs,

then we can define P as a function of the ray:

P (t) = A+ tb

7

Algorithm 1: sphereIntersect()
Input: Ray R, Sphere S, float Min; minimum distance along ray to be

considered an intersection, Max; maximum distance along ray to

be considered an intersection, H; struct containing data about an

intersection if one does occur

Output: True if an intersection occured, False otherwise

1 vec3 oc = R.origin - S.center; /* A− C */

2 float a = dot(R.direction, R.direction); /* b · b */

3 float halfB = dot(oc, R.direction); /* b · (A− C) */

4 float c = dot(oc, oc)- (s.radius * s.radius); /* (A− C) · (A− C)− r2 */

5 float underRadical = (halfB * halfB) - (a * c);

6 if underRadical < 0 then

/* if not 0 or positive, no roots */

7 return False;

8 float radical = sqrt(underRadical);

9 float root = (-halfB - radical) / a;

10 if root < Min or root > Max then

11 root = (-halfB + radical) / a;

12 if root < Min or root > Max then

13 return False; /* a hit would occur, but outside hit interval */

/* record hit information in H */

14 return True;

where A is the origin of the ray, and b is the direction of the ray. Transforming

the sphere equation before we get:

(A+ tb− C) · (A+ tb− C) = r2

Further simplifying, we get the polynomial:

(b · b)t2 + (2b · (A− C))t+ (A− C) · (A− C)− r2 = 0

Applying the quadratic formula, if no roots are found, no intersection occurs. If

one root is found, the ray is tangential to the sphere and intersects. If two roots

are found, the ray passes through the sphere and intersects.

8

3.4 Triangle Intersection Algorithm

Algorithm 2: triangleIntersect()
Input: Ray R, Triangle T , float Min; minimum distance along ray to be

considered an intersection, Max; maximum distance along ray to

be considered an intersection, H; struct containing data about an

intersection if one does occur

Output: True if an intersection occured, False otherwise

1 vec3 u = T .v1 - T .v0;

2 vec3 v = T .v2 - T .v0; /* Compute triangle direction vectors u and v */

3 vec3 normal = cross(u, v);

4 vec3 nNormal = normalize(normal);

5 float D = dot(nNormal, T .v0);

6 vec3 w = normal / dot(normal, normal);

7 float denom = dot(nNormal, R.direction);

8 if |denom| < 0.0001 then

9 return False;

10 float t = (D - dot(nNormal, R.origin)) / denom;

11 if t < Min or t > Max then

12 return False;

13 vec3 intersectionPoint = R.origin + t * R.direction;

14 vec3 pointOnTrianglePlane = intersectionPoint - T .v0;

15 float a = dot(w, cross(pointOnTrianglePlane, v));

16 float b = dot(w, cross(u, pointOnTrianglePlane));

17 if a < 0 or b < 0 or a + b > 1 then

18 return False;

/* record hit information in H */

19 return True;

This triangle intersection algorithm [20] takes a triangle and a ray suspected

of intersecting as well as a hit interval (Min and Max) and an object to record

useful intersection information if an intersection does occur.

9

This algorithm uses a secondary formulation of a triangle which has many

advantages. A triangle can be defined as three vertices, but it can also be defined

as a point and two direction vectors. The point Q and the 2 direction vectors u

and v have many beneficial properties that are used here:

• vertices exist at Q, Q + u, and Q + v

• u and v span R2

• u and v are formed by subtracting the Q vertex from the other two vertices.

This means Q + au + bv yields a point on the triangle if a >= 0, b >= 0,

and a + b < 1

While useful, the render pipeline consumes triangles as a collection of 3 vertices,

so u and v are formed during the intersection algorithm.

First, a plane is formed to see if an intersection occurs with the plane. A Plane

is defined by:

Ax+By + Cz = D

it can also be defined by a normal vector and position vector:

n · v = D

where n is a vector perpendicular to the plane and v is a position on the plane.

With a point on the plane, as in Section 3.3, we can define this point as an

intersection point:

n · (A+ tb) = D

where A is the ray origin, b is the ray’s direction vector, and t is a multiplier on

the direction vector used to determine if the intersection is within the hit interval.

Rearranging to solve for t:

t =
D − n · A

n · b
So we can compute t easily, but this is for a plane, not a triangle. If we hit the

triangle, it is hit at A+tb, but first we need to know if the point A+tb is actually in

the triangle. Let’s suppose we have a point H on the plane of a triangle composed

of the point Q and direction vectors u and v. Because u and v span R2, they can

be used as basis vectors to uniquely identify any point on the plane of the triangle.

H = Q+ au+ bv

10

If we can solve for a and b, we can test if H exists on the triangle. Removing the

points to just focus on the origin:

h = H −Q = au+ bv

h has is used but cancels some things. To quickly show those cases first:

u× h = u× (au+ bv) = a(u× u) + b(u× v)

u× u = 0 => u× h = b(u× v)

Similarly:

v × h = v × (au+ bv) = a(v × u) + b(v × v)

v × v = 0 => v × h = a(v × u)

We can solve for a and b, as crossing u and v with h cancels out a and b respectively.

The plane’s normal n is defined by u× v, so:

n · (v × h) = n · a(v × u)

n · (u× h) = n · b(u× v)

solving for a and b:

a =
n · (v × h)

n · (v × u)

b =
n · (u× h)

n · (u× v)

We need to swap the cross products of the a formula so that have a common

denominator:

a =
n · (h× v)

n · (u× v)

Now create a vector w defined as:

w =
n

n · (u× v)
=

n

n · n

Then

a = w · (h× v)

b = w · (u× h)

If a + b > 1 or if either a or b is < 0, H is not inside the triangle. Interestingly,

the same algorithm can be used for a Quadrilateral, but instead of checking for

a > 0, b > 0, a+ b < 1, one can check for 0 < a < 1 and 0 < b < 1.

11

3.5 Gamma Correction

This project employed Gamma correction to distribute color into spaces humans

have better ability to distinguish colors. Perceptions of brightness for humans

allows more distinction in darker tones than in lighter ones. Linearly distributing

the brightness of the image would mean nuance in brighter areas would be lost due

to our perceptions. To account for this, gamma compression is used; specifically:

Vout = AV γ
in

where A = 1, γ = 1/2, and Vout represents the resulting colors of each pixel in the

image and Vin represents the colors of each pixel produced by the raytracer.

3.6 Game Engine Organization and Scene Tools

This raytracer allows for objects to be added, removed, and modified while ren-

dering is occurring. The states of all objects in the scene are maintained on the

CPU and transferred to the GPU every frame.

Scenes maintain a list of GameObjects which maintain their individual model,

transform, and components list. GameObjects can be added, modified, and re-

moved in real-time from scenes. GameObjects can load models from .obj files

which are transformed into triangles in memory. A Material, containing informa-

tion about how to render the object, is attached to each GameObject.

3.7 Render Pipeline

Three stages are used to generate the resulting image. The first applies model

transforms to triangles and spheres from model space into world space.

A ∗M = W

where M is a 4x1 column vector representing a vertex in model space, W is a

4x1 column vector representing a vertex in world space, and A is a 4x4 matrix

encoding transformations (translation, rotation, and scale) for a particular object

12

into a 4x4 matrix of the following form:

a b c tx

d e f ty

g h i tz

0 0 0 1

Here, tx, ty, and tz store translation information for the axes x, y, and z re-

spectively. The constant 1 at index (3, 3) causes these translation values to be

additively applied. Variables a − i are a particular chosen rotation convention

and encoded both rotation and scale. In this project, Tait-Bryan Angles with axis

order Y, X, Z are used. Thus the variables are defined as follows:

c1 = cos(rotation.y) s1 = sin(rotation.y)

c2 = cos(rotation.x) s2 = sin(rotation.x)

c3 = cos(rotation.z) s3 = sin(rotation.z)

a = scale.x(c1c3 + s1s2s3)

b = scale.y(c3s1s2 − c1s3)

c = scale.z(c2s1)

d = scale.x(c2s3)

e = scale.y(c2c3)

f = scale.z(−s2)

g = scale.x(c1s2s3 − c3s1

h = scale.y(c1c3s2 + s1s3)

i = scale.z(c1c2)

This matrix, A, is known as a 3D affine transformation via homogeneous coordi-

nates. After transforming each vertex in this way, the triangles and spheres are

ready for the raytracer. This stage identifies pixel locations, generates an initial

ray based on camera location, and checks to see if the ray collides with anything

13

Algorithm 3: getRay()
Input: vec2 xy; coordinates identifying the pixel

Output: Ray

1 vec3 rayOrigin = cameraPosition;

2 vec3 pixelSample = (pixel00Location + (xy.x * pixelDeltaU) + (xy.y *

pixelDeltaV));

/* The pixel00Location, pixelDeltaU, and pixelDeltaV variables are

similar to Q, u, and v as described in the Triangle Intersection

algorithm. However, here, the vectors pixelDeltaU and pixelDeltaV

are of length 1-pixel on the projected image surface in width and

height respectively */

3 vec3 rayDirection = pixelSample - rayOrigin;

4 return Ray(rayOrigin, normalize(rayDirection))

in the scene. If it doesn’t collide with a triangle or sphere, it collides with the

background (usually black (0, 0, 0, 1)). If it does collide with something besides

the background, emitted light from the collided surface and the color of the col-

lided surface are recorded, and the ray is scattered according to the properties of

the surface it has collided with. Currently, only diffuse materials are handled by

the scatter function. After getting a color for the ray, the color is added to the

current color from the output image for that pixel, and then stored in that output

image for that pixel. A pixel’s color is a 4x1 vector (r, g, b, a) stored as 4 32-bit

floating point numbers. When interpretted to deduce the pixel color in the final

image later, these values are expected to be in the range 0 < c < 1 where c is

any component of the color vector. Using 32-bit floats instead of 8-bit integers

allows for a larger range of colors to be expressed but also allows accumulation

beyond the 0 to 1 range, which is useful considering the Monte-Carlo nature of

the raytracer. This raytracer stage can produce an image with color values far in

excess of this range due to repeated usage (ie, sending more than 1 rays per pixel)

or due to initial brightness values being outside the range. This issue is corrected

in the next and final stage. The raytracing stage can be run multiple times, each

time firing a new ray for each pixel into the scene.

14

Algorithm 4: rayColor()
Input: Ray R

Output: vec3 Color

1 HitRecord rec;

2 vec3 color = vec3(0);

3 vec3 globalAttenuation = vec3(1);

4 vec3 unitDir = normalize(R.direction);

5 Ray curr = Ray(R.origin, unitDir);

6 for uint i = 0; i < MAXRAYTRACEDEPTH; i++ do

7 if !sceneHit(curr, rec) then

8 color = color + (BACKGROUNDCOLOR * globalAttentuation);

9 break;

10 vec3 attenuation;

11 vec3 emmitedColor = emmitted(rec);

12 color = color + (emmittedColor * globalAttenuation);

13 bool scattered = scatter(curr, rec, attenuation, curr);

/* scatter() sets attenuation and curr to new values */

14 globalAttenuation *= attenuation;

15 if !scattered then

16 break;

17 return color ;

After generated a raytraced image, it needs to be rendered to the screen. This

is done by placing a triangle to entirely take up vulkan’s canonical view volume

and mapping the raytraced-image’s pixels to locations on the triangle. The vertex

shader creates the triangle and the fragment shader returns image pixel values

instead of any color associated with this triangle. [24]

The fragment shader does a few corrections as well. First, it divides the

raytraced-image’s pixel values by the total number of rays fired. This avoids

the issue of going outside the interprettable range due to firing multiple rays. To

handle the case of initial brightness values being too large, the colors are clamped

into the required range. Also in this stage, gamma correction, as described in

15

section 3.5, is applied. In this stage, the alpha component for every color is set

to 1, as the raytracer doesn’t need to use the alpha channel for it’s usual purpose

and is free to use it in other ways.

3.8 Challenges So Far

The main challenge has been converting CPU raytracer code to work on the GPU.

A number of factors become problems when moving to the GPU, especially random

sources and synchronization.

Many randomization engines rely on a single-threaded environment, or at least

involve a mutex, for generation. This poses a problem on the GPU and likely

explains why few tools offer random generation tools on the GPU. For this project,

a random seed was needed for each pixel as rays were cast repeatedly. To achieve

this, each frame was given a seed, then the alpha channel of the resulting image

stored a bias value created based on the seed after use. This bias value was used to

modify the seed per pixel in further iterations, creating a seed for each pixel. This

choice results in a poor source of randomness for the simulation, which is likely at

fault for some of the minor discrepencies that can be seen when comparing to a

CPU-based algorithm (see Section 3.9).

With a CPU-based raytracer, synchronization isn’t a problem in many cases.

But on the GPU, everything is run at once, making it difficult to write some

types of functions. The ray color algorithm 4 uses additional variables, as the

CPU-based version used recursion (specifically tail-recursion), which isn’t allowed

by GLSL. Another way synchronization becomes an issue is when parallelizing

operations that have dependencies. By the nature of the Command Buffers used

by Vulkan, tasks are started in an order but may complete in any order, unless

synchronization tools, provided by Vulkan, are used to prevent starting of tasks

before the completion of others.

3.9 Output Examples

Figure 1 and Figure 2 show a comparison of the output from a two raytracers,

one running primarily on the CPU and another running the raytracing portion of

16

Figure 1: GPU Raytraced Figure 2: CPU Raytraced

the program on the GPU. Both 800x800 images were produced with 128 rays per

pixel, with each ray being able to bounce up to 25 times.

CPU Raytracer GPU Raytracer

621.186 seconds 1.287 seconds

Table 1: Runtime Comparison of CPU and GPU raytracers rendering a single

frame of the Cornell Box

The images are produced in vastly different times with comparable quality.

Comparing the time to generate a frame as the number of rays per pixel changes

yields the graph in Figure 3. This chart shows approximately a 500 times increase

in performance, though notably, the image in Figure 1 does appear slightly more

noisy. This is likely a result of the poor randomization engine mentioned in Section

3.8.

4 BVH Implementation

To implement this BVH on the GPU, a sequence of GLSL shaders were used. The

pipeline worked as follows:

1. Transform primitives from model space to world space

17

Figure 3: Number of Multiples faster the GPU renders the Cornell Box compared

to the CPU with varying rays per pixel

2. Find an enclosing Axis-aligned Bounding Box (AABB) for all primitive cen-

ters

3. Quantize and convert centers into Morton Codes

4. Sort the Morton Codes

5. Construct the structure of the tree using the Morton Codes

6. Build AABBs for each tree node

7. Raytrace with BVH

All but the first step was developed as part of this project.

4.1 Enclosing AABB

Finding an Axis-aligned bounding box that contains all centers is needed as the

morton codes, which provide the ordering for primitives in a 3D space, as based

on locations within an encapsulating space. This functionality is effectively a

multi-threaded reduction function.

18

All primitives (triangles and spheres), a count of primitives, a shader storage

buffer object with space for the enclosing AABB output, an a shared int used

for atomic operations are provided to the shader. It functions but first having a

single thread set initial values for the bounding box and setting the atomic int to

0. Then 256 threads across 4 to 8 Streaming Processors each find a primitive, get

it’s center, and update individually held localMin and localMax values. To find

an element, a thread uses an invocation id, 0-255 in this case. Progressing through

the list of primitives just involves incrementing the 0-255 value by 256 (the size of

the workgroup).

Algorithm 5: Example of Traversing a large list with fewer threads

1 #define WORKGROUPSIZE 256;

2 layout(local_size_x = WORKGROUPSIZE) in;

/* ... */

3 vec3 localMin;

4 vec3 localMax;

5 for uint elemIndex = gl_localInvocationID; elemIndex < primitiveCount;

elemIndex += WORKGROUPSIZE do

6 vec3 center;

7 if elemIndex < ubo.numTriangles then

8 center = getTriangleCenter(triangles[elemIndex]);

9 else

10 center = spheres[elemIndex - ubo.numTriangles].center.xyz;

11 localMin = min(center, localMin);

12 localMax = max(center, localMax);

With 256 localMin and localMax values aggregated, they must be combined.

They are first combined by subgroup using subgroupMin() and subgroupMax(),

which collects all the values for a variable in a subgroup and performs an operation

on them, returning to result to all threads within the subgroup. This reduces the

values left to combine from 256 to 8 or 4 (depending on video card vendor, 8 for

NVIDIA (32 threads per streaming process), 4 for AMD (64 threads per streaming

19

process)).

Finally, a single thread from each subgroup waits on the atomic int until the

subgroup’s ID is the same as the atomic int. If it is, it performs the min and max

operation using it’s localMin and localMax values. It then increments the atomic

int.

There are many other ways to implement reduction-like operations on GPUs.

Another which was considered involved storing aggregation values into shared

arrays, and making a single subgroup handle aggregation. This technique will be

demonstrated with localIndexOffsets and globalIndexOffsets in Section 4.3.

4.2 Generate Morton Codes

Morton Codes are critical to this project as they provide an ordering to elements

in 3D space and correlate to Octant coordinates for each set of 3 bits (this project

uses 30). This creates a useful method for grouping primitives by their locality,

which is important when considering BVH construction.

For spheres, the centers are simple, but triangles offer many types of centers

than can be used. In Pantaleoni and Luebke [16], a barycenter is used for triangle

centers. In this project, the centroid of the triangle is used (a simple average of

the vertices).

To create a morton code from a primitive center, we must:

1. quantize the center into a vector of integers

2. formulate integers into a single integer such that their bits are interleaved

Algorithm 6: quantizeForMorton()
Input: vec3 coord

Output: uvec3

1 vec3 locationWithin = coord - enclosingAABB.min;

2 vec3 span = enclosingAABB.max - enclosingAABB.min;

3 vec3 offset = coord / span;

/* 0.0 to 1.0 scale for each dimension */

4 return uvec3(offset * (1 « MORTON_BITS));

20

To quantize the center, the enclosing AABB is used. We can create a floating-

point value between 0 and 1 to represent where the primitive exists within the

enclosing AABB. 0 means the center is very close to the minimum of the AABB,

and 1 means the center is very close to the maximum of the AABB. This floating

point value can then be scaled based on the number of bits being used to generate

the Morton codes. More bits results in more fine grained location information.

Algorithm 7: separateBitsBy3()
Input: uint val

Output: uint

1 val = (val | (val « 16)) & 50331903;

/* moves bit 9 and 8 to last byte. masks off the rest */

2 val = (val | (val « 8)) & 50393103;

/* moves bits 4-7 to upper portion of second byte. masks off the rest

*/

3 val = (val | (val « 4)) & 51130563;

/* moves bits 6, 7, 2, and 3 the to the next nibble. masks off the

rest. this leaves 5 pairs of adjacent bits */

4 val = (val | (val « 2)) & 153391689;

/* separates each pair by moving the first of the two forward 2 spaces.

Masks off the rest. Due to earlier spacing, all bits now have to 0’s

between them and the next bit. */

5 return val ;

With the center quantized, interleaving the bits remains. In this project, bit

shifts and masks were used to separate the bits such that 2 "holes" or empty values

existed between each. This allows for one set of bits to be interleaved with the

others by simple shifts.

With the Morton codes created, the respective primitive index and primitive

type (triangle or sphere) is also sorted to correlate the Morton codes after they

get sorted in the next section.

21

Algorithm 8: mortonCode3D()
Input: uvec3 quantizedCoord

Output: uint

1 return (separateBitsBy3(quantizedCoord.x) « 2 |

separateBitsBy3(quantizedCoord.y) « 1 |

separateBitsBy3(quantizedCoord.x));

4.3 Sort Morton Codes

There are many publications about sorting algorithms on the GPU. Due to SIMD

environments’ ability to essentially perform some O(n) tasks in constant time but

not with the same write guarentees of a single threaded environment, different

algorithms are the fastest on the GPU. Noted in both GPU Gems 2 [17] as well

as Pantaleoni and Luebke [16], odds-evens sort is an easy-to-understand example

of how the SIMD environment affects sorting algorithm comparison. Archipov,

et al. [1] explores GPU sorts in a survey and finds bucketization sorts, particu-

larly Radix Sort, to be particularly effective, alongside many other characteristics.

Others, such as Maltenberger, et al. [14] have even focused on multi-GPU sorting

algorithms, sorting 1,000,000,000 elements in 45ms. Sorting on the GPU is a well

documented and developed space. The implementation in this paper is uncom-

parably simple compared to the papers mentioned above, but operates at good

enough speeds for the task at hand (see, Section 5).

For this paper, LSB Radix sort was implemented (4 iterations w/ 8 bits each

iteration) using a single workgroup. A workgroup of size 256 and two shader

storage buffer objects are used. To sort, several steps must be completed:

1. enumerate the number of elements that fall within each bin

2. figure out at what index each bin starts in a resulting array

3. traverse all primitives and relocate them correctly while maintaining order

from previous iterations

For the first step, an array of integers, one per bin, is initialized. Each ele-

ment is examined and their bin collected using a bitmask. The count at the bin

identified, which acts as an index, is used to increment the count atomically.

22

The second step makes used of some more complex subgroup operations, partic-

ularly exclusive scan. As an algorithm, exclusive scan takes an array of summable

elements, and returns a progressive sum of elements such that the resulting index is

the sum of all previous indices. This is especially useful in finding the index where

a given bin should begin in the result of LSB radix sort. However, parallelizing

this requires a reduction similar to Section 4.1.

Algorithm 9: Subgroup Reduction And Subgroup Exclusive Scan

1 if gl_LocalInvocationID.x < BINS then

/* histogram contains the number of elements that need to go in each

bin */

2 uint histogramCount = histogram[gl_LocalInvocationID.x];

3 uint sum = subgroupAdd(histogramCount);

4 uint prefixSum = subgroupExclusiveAdd(histogramCount);

5 localIndexOffsets[gl_LocalInvocationID.x] = prefixSum;

/* subgroupElect() returns true for only 1 thread within the

subgroup. All others return false */

6 if subgroupElect() then

7 subgroupReductions[gl_SubgroupID] = sum;

GLSL has a function subgroupExclusiveAdd which creates the input array

for exclusive scan using the values inside sequential threads of a single streaming

processor (32 Nvidia, 64 AMD). This means thread 0 gets back 0, thread 1 gets

back thread 0’s count, thread 2 gets back the sum of thread 0’s count and thread

1’s count, etc.

After doing subgroup level reduction, results from the sum and exclusive scan

are stored in two arrays. A single subgroup then handles going through each

bin and collecting the subgroup reductions into the true sums, yielding the index

offsets for each bin in the soon to be sorted array.

Lastly, to transfer each element over to the resulting array correctly, an order

must be created to identify where within the bin an element should be written.

To solve this problem, an array of arrays of unsigned integers. The outer array,

provides a set of integers to store bit flags to each bin. The inner arrays store

23

Algorithm 10: Subgroup Reduction And Subgroup Exclusive Scan

1 if subGroupID == 0 then

2 uint indexOffset = 0;

3 for uint i = gl_SubgroupInvocationID; i < BINS; i +=

SUBGROUP_SIZE do

4 globalIndexOffsets[i] = indexOffset + localIndexOffsets[i];

5 indexOffset += subgroupReductions[i / SUBGROUP_SIZE];

enough integers to contain a boolean value (1 bit) for each thread in the work

group. Morton Codes (and primitive index information) are written to their sorted

location in batches of 256 (the work group size).

If a Morton code should be put into a particular bin, then the bin is used to

identify the index of out outer array and it’s work group invocation number is

used to identify and set the bit in the inner array. After all 256 have done so,

the number of bitCount of the respective inner array until the thread’s respective

boolean identifies the proper index for it to write. The last element to write in

a bin adds the number of elements just written to the bin to the index offsets

identifying bin start locations, allowing for another group of 256 to be written.

This process represents 1 iteration of radix sort, which operates, in this imple-

mentation, on 8 bits at a time. After 4 iterations, all Morton codes are sorted.

4.4 Tree Construction

A common system for tree construction involved building the tree during a frame,

and updating it in the subsequent frames until a heuristic evaluates that the

tree isn’t worth the time to modify and is reconstructed. Bittner, et al. [3]

explores optimizations in the space of maintaining trees, however, in this project,

the implementation will follow the ideas of Karras [11] which follow the works of

Lauterbach et al. [13] and Pantaleoni and Luebke [16] in reconstructing the tree

every frame.

There are many aspects to BVH construction. From the research reviewed,

it appears that three in particular, memory footprint, construction speed, and

24

Algorithm 11: Bin Indexing Flags And Finding Inter-Bin Offset

1 const uint indexFlagBin = gl_LocalInvocationID.x / BITS;

2 const uint indexFlagBit = 1 « (gl_LocalInvocationID.x % BITS);

3 const uint indexFlagBitMask = indexFlagBit - 1;

4 for uint blockID = 0; blockID < primitiveCount; blockID +=

WORKGROUP_SIZE do

5 barrier();

6 const uint ID = blockID + workGroupInvoID; MortonPrimitive elem;

uint binID = 0; uint binOffset = 0;

7 if ID < primitiveCount then

8 elem = GET_INPUT_ELEMENT(ID, iteration);

9 binID = uint(elem.code » shift) & bitMask;

10 binOffset = globalIndexOffsets[binID];

11 atomicAdd(binIndexingFlags[binID].locationInfo[indexFlagBin],

indexFlagBit);

12 barrier();

13 if ID < primitiveCount then

14 uint interBinOffset = 0; uint count = 0;

15 for uint i = 0; i < WORKGROUP_SIZE / BITS; i++ do

16 const uint bits = binIndexingFlags[binID].locationInfo[i];

17 const uint fullCount = bitCount(bits);

18 const uint partialCount = bitCount(bits & indexFlagBitMask);

19 interBinOffset += (i < indexFlagBin) ? fullCount : 0U;

20 interBinOffset += (i == indexFlagBin) ? partialCount : 0U;

21 count += fullCount;

/* count is used to identify which thread is the last in a bin

*/

/* binOffset + interBinOffset is the index to write to */

traversal speed, are the most important factors to consider when implementing

a BVH. BVH construction can result in a highly optimal tree which can be tra-

versed incredibly fast, but often this construction becomes an expense all it’s own

25

in real-time settings. A recent thesis by Athos van Kralingen [12], found that the

optimal BVH construction, as of now, is scene dependent. Surface Area Heuris-

tic (SAH) is often used as a gold standard for comparing BVH traversal speeds.

Several heuristics reviewed by Kralingen including SAH, the Scene-Interior Ray

Origin Metric [5], Preferred Ray Distributions [8], Ray Distribution Heuristic [4],

and Occlusion Surface Area Heuristic (OSAH) [22] were evaluated. Preferred Ray

Distributions, the Ray Distribution Heuristic, and OSAH were found to construct

the fastest BVH depending on the scene in Kralingen’s research. SAH has been

used for real-time settings [23], but is generally considered to have a slow construc-

tion speed [16] [13]. Unfortunately many of those methods are far from feasible in

a real-time setting, making them difficult to use in this project. SAH alone can

easily take 400ms to construct a BVH in large scenes [16]. If the target framerate

of just 30 fps, that only leaves 33.3ms per frame. So quicker construction methods

with good-not-great traversal speeds need to be examined.

Now that the Morton codes have been sorted, The BVH structure can be

created but it’s split into two parts. The first is described here and creates the

nodes and sets all the pointers such that each primitive is contained within a

node and exists only once. The nodes are stored in an array and arranged such

that n − 1 internal nodes are followed by n leaf nodes, which don’t contain child

nodes but instead primitive pointers. The total number of nodes in the BVH data

structure is n(n− 1). The root node is the 0th node in the array. Nodes contain

an AABB, a leftChild and rightChild, a primitiveIndex and a primitiveType.

Leaf nodes use the primitiveIndex and primitiveType while internal nodes use

the AABB, leftChild, and rightChild. leftChild and rightChild are indices to

the array containing the nodes.

The first step involves constructing all of the leaf nodes. Each primitive has

an AABB constructed. The node index is n − 1 + primitiveIndex. The AABB

is set, the leftChild and rightChild are set to 0 (representing an invalid index),

and the primitive index and type are transferred. AABBs of internal nodes are

constructed in a different shader described in Section 4.5. This is because we can

construct all of the internal nodes at once, but doing so makes getting accurate

AABB information impossible, as child nodes may not yet be available in memory.

26

To construct all of the internal nodes at once, a pair of useful algorithms are

used. The first, Function 13, determines creates a range across the Morton code

array. This range represents the set of primitives that will be a descendant by this

node. The second, Function 14, determines where, within that range, to split it

in two. The leftChild will handle one portion while the rightChild will handle

the rest.

With this information, the nodes can be formed. If the split identified is the

first element in the range, the leftChild is only handling one primitive, so the

leftChild is a leaf node and the node index is n − 1 + split. Similarly, if the

split identified is one less than the last element, then the rightChild only has

one primitive to handle, so the rightChild is a leaf node and the node index is

n−1+split+1. Otherwise the index to the next internal node is split and split+1

respectively.

Algorithm 12: countLeadingZeroesFromDifference()
Input: int i, int j

Output: int

1 if either index is out of bounds of primitive array then

2 return -1 ;

3 uint code1 = mortonPrimitives[i].code;

4 uint code2 = mortonPrimitives[j].code;

5 if code1 == code2 then

6 return 32 + 31 - findMSB(i ⊕ j);

7 return 31 - findMSB(code1 ⊕ code2);

Before taking a closer look at Function 13 and Function 14, Function 12 is

used in them and must be explained. This function finds how many zeroes exist

before the first 1 in the difference between two Morton codes. This is useful as the

more zeroes, the more that the start of the Morton codes are identical, meaning

the closer the two objects are in space. For duplicate Morton codes, the indices

in the Morton code array are used. The result from that case is increased by 32,

representing the Morton codes were identical while still giving unique results for

a sequence of duplicate Morton codes.

27

Algorithm 13: determineRange()
Input: int id

Output: int lower, int upper

1 const int deltaL = countLeadingZeroesFromDifference(id, id - 1);

2 const int deltaR = countLeadingZeroesFromDifference(id, id + 1);

3 const int dir = (deltaR >= deltaL) ? 1 : -1;

4 const int deltaMin = min(deltaL, deltaR);

/* pick the one most different */

5 int iMax = 2;

/* upper bound */

6 for ; countLeadingZeroesFromDifference(id, id + iMax * dir) > deltaMin;

do

7 iMax «= 1;

8 int i = 0;

/* back the other way to get actual value */

9 for int t = iMax » 1; t > 0; t »= 1 do

10 if countLeadingZeroesFromDifference(id, id + (i + t) * dir) >

deltaMin then

11 i += t;

12 int endId = id + i * dir;

13 lower = min(id, endId);

14 upper = max(id, endId);

Function 13 takes the id of the current thread for the global workgroup and

outputs a lower and upper, representing the start and end of the range. To

set lower and upper, Function 12 is used on the current Morton code and it’s

neighbors. For the range, the current id will be used for one of either lower or

upper. The goal now is to find the other end of the range. Specifically, the range

is such that all codes within have an equivalent or greater number of zeroes from

Function 12. This range represents all the Morton codes in the scene that the

same prefix of bits. To do this, the upper bound is first over estimated and then

corrected. To find the upper bound, an increasing range of codes are evaluated

28

until they become too different. Then bit shifting is used to find the exact index

where before the difference becomes too large. Using bit shifts causes the algorithm

to make jumps as it searches for the right index, effectively performing binary

search.

Algorithm 14: findSplit()
Input: int first, int last

Output: int

1 int commonPrefix = countLeadingZeroesFromDifference(first, last);

2 int split = first;

3 int stride = last - first;

4 do

5 stride = stride + 1 » 1;

6 int newSplit = split + stride;

7 if newSplit < last then

8 int splitPrefix = countLeadingZeroesFromDifference(first,

newSplit);

9 if splitPrefix > commonPrefix then

10 split = newSplit;

11 while stride > 1 ;

12 return split ;

Function 14 takes the resulting range from Function 13 and outputs an index

within that range to represent where the split should occur. The goal is to find

a balanced point to split the range based bit prefix difference. If the range is

75% of very close together primitive (really big prefix) towards the start, then the

split will occur after them. If they’re towards the end, then before. This results

in primitives that are further away from other primitives appearing closer to the

top of the tree. If a ray is going to hit a dense patch of primitives, then a larger

number of internal nodes are needed to deal with that (as this is a binary tree). To

achieve this, binary search is used once more. A stride is defined as the distance

from the end to the start of the range and the initial split value is set to the start

of the range. stride is divided in half and a proposed newSplit is created. If that

29

split is within the range and has a more similar prefix than the start and end of

the range, it is adopted as the new split location. Equality does not update the

split location.

With these functions, the internal nodes can be created all at once. However,

their AABBs cannot. This is because the AABB of an internal node is deter-

mined by the minimums and maximums of their children’s AABBs. In creating

all internal nodes at once, there is no guarantee that a child node has set their

AABB yet. To solve this, another shader is used, see Section 4.5. That shader

does need some information to build the AABBs bottom-up, so those structures

are set during the internal node construction process. They essentially create the

information necessary to go from the bottom to the top of the BVH (as nodes lack

a parent variable as a member, but it also contains a synchronization primitive

that will be used later.

4.5 Building AABBs for Tree Nodes

The BVH that has been constructed still lacks properly defined AABBs for each

node. Individual nodes lack parent members, making bottom-up traversal difficult.

However, in Section 4.4, some information was stored in an array to allow bottom-

up traversal. These structs contain a parent member and a visitationCount and

are stored at the index of each child node.

The AABB of a given node is defined by the minimums and maximums of it’s

child nodes. In other words, the parent AABB must contain all child AABBs.

To achieve this, 1 thread starts at each leaf node (which contain primitives and

have defined AABBs). They then use the struct info to find the parent and

increment, atomically, the visitation count. If this thread was first to arrive, the

other child node may not be fully computed yet, so this thread dies, as it won’t

be needed anymore. When the second thread arrives, both children now have

properly defined AABBs, so they are combined to create the parent AABB. This

continues upward till 1 last thread arrives at the root for it’s second visitation.

After setting the AABB, it returns and the BVH is complete.

30

Algorithm 15: buildAABBsForInternalNodes()

1 const int primitiveCount = int(numTriangles + numSpheres);

2 const int leafOffset = primitiveCount - 1;

3 if gl_GlobalInvocationID.x >= primitiveCount then

4 return;

5 uint nodeId = constructionInfo[leafOffset +

gl_GlobalInvocationID.x].parent;

6 for ;true; do

7 int visitations = atomicAdd(constructionInfo[nodeId].visitationCount,

1);

8 if visitations < 1 then

9 return;

10 HLBVHNode node = nodes[nodeId];

11 HLBVHNode left = nodes[node.leftIndex];

12 HLBVHNode right = nodes[node.rightIndex];

13 node.aabb = combineAABB(left.aabb, right.aabb);

14 nodes[nodeId] = node;

15 if nodeId == 0 then

16 return;

17 nodeId = constructionInfo[nodeId].parent;

4.6 Raytracing with a BVH

For traversal, a stack and a few values can be used to keep track of where to look

next. This algorithm is described in Function 16. The closest hit still needs to

be found, so an exhaustive search must be done, but if a node isn’t hit during

traversal, then any primitives within itself or its children can safely be ignored.

When a node is hit, if it is a leaf node, then it’s primitives can be checked for hits.

Any hits found decrease the max range of the search, further eliminating future

nodes as the search continues. If it is not a leaf node, then one child is added

to the stack while the other is searched. This continues until the stack is empty,

at which point, the closest hit, the primitive involved, and any other information

31

have been collected and are ready to be used to continue the raytracing process.

Algorithm 16: hitBVH()
Input: Ray r, HitRecord rec, float min, float max

Output: bool; true if hit, false otherwise

1 uint stack[128];

2 uint toVisitOffset = 0;

3 uint currentNodeIndex = 0;

4 bool hit = false;

5 float closest = max; for ; true; do

6 Node node = nodes[currentNodeIndex];

7 if AABBhitCheck(node.aabb, ray) then

8 if node.isLeafNode then

9 if node.primitiveType == SPHERE_PRIMITIVE then

/* perform sphere intersection and update closest and hit,

if hit */

10 else

/* perform triangle intersection and update closest and

hit, if hit */

11 if toVisitOffset == 0 then

12 break;

13 currentNodeIndex = stack[–toVisitOffset];

14 else

15 stack[toVisitOffset++] = currentNodeIndex + 1;

16 currentNodeIndex = node.secondChildOffset;

17 else

18 if toVisitOffset == 0 then

19 break;

20 currentNodeIndex = stack[–toVisitOffset];

21 return hit ;

32

4.7 Challenges

There were many challenges over the course of this project. Perhaps one of the

most prevalent was my lack of experience in highly-parallelized environments and

lack of familiarity with the tools available. This project has helped alleviate those

issues, hopefully so that future projects will go more smoothly, but learning about

the in-shader synchronization tools such as barrier(), memoryBarrier(), and sub-

group reduction tools such as subgroupMin resulting in some re-writes in the

implementation process.

A notable case of this was in finding the enclosing AABB. Initially, AABBs

were constructed on all primitives, then transferred back to the CPU, where the

reduction was done, then flushed to a uniform buffer and returned to the GPU.

After learning of the reduction capabilities available, this was changed.

The initial plan involved constructing AABBs for all primitives first, but this

became somewhat pointless due to the BVH construction. Rather than carry an

additional shader filled with additional pointer redirection via index offsets, the

implementation was able to avoid constructing AABBs until the Tree construction,

where AABBs are stored in leaf nodes.

A notable bug was one where regions of triangles failed to render; not entire

triangles, but triangular sub regions of triangles. This was caused by an inaccurate

AABB construction algorithm for triangles. An initial implementation used the

first vertex of the triangle and a created point v0 + (v1 − v0) + (v2 − v0). This

can form an AABB, but it formed them entirely too large, and in some cases,

malformed as to cut off portions of the triangle. It was resolved by using the

minimums and maximums of each coordinate.

Another notable bug involved putting too many uses upon a variable. When

evaluating all primitives, gl_GlobalInvocationID comes an great tool for indexing

into the array of primitives in a highly parallelized way. However, primitives are

actually stored in 2 shaders storage buffers, one for triangles and one for spheres.

This led to many cases where the index would need to be redefined. If the index

was below the number of triangles, then it identified a triangle. But if it was

above that but below the total number of primitives, then it identified a sphere

via index−numberOfTriangles. When generating Morton primitives, this index

33

was over used to identify both the primitive index and where the Morton primitive

just created should be stored. This resulted in incoherent memory interactions, as

two or more threads would try to write data to the same places. This was easily

resolved.

5 Results

The benefit of a BVH is purely in frame generation time and has no visual impact.

This makes a comparative methodology easy as timing is all that’s needed. In par-

ticular, the overall frame generation time, the raytracing time, and the BVH build

time are of interest. In these, the introduction of a BVH have been profoundly

beneficial.

Scene Poly-

count

CPU GPU GPU +

BVH

Cornell

Box

37 621.186 1.287 1.865

Blender

Suzanne

507 N/A 2.234 0.4769

Stanford

Bunny

69,458 N/A >601 12.132

Table 2: Runtime Comparison of Raytracers across scenes (seconds, 32 rays per

pixel, depth 16)

A binary tree BVH takes the average ray-scene hit detection from evaluating

all primitives, n, to evaluating as few as log2(n).

For extremely simple scenes (<200 primitives), the inclusion of a BVH can

be detrimental, as scene with the cornell box example. This is due to increases

in execution divergence (evaluating a for loop in parallel vs traversing a tree)

and the need to interact with internal nodes. However, poly counts for video
1>60 means a single frame failed to be rendered in a minute

34

games have been easily above 1,000 and often in the millions for some time. Some

technologies like Unreal Engine’s Nanite are able to manage billions of triangles

(though rendering significantly less) [10].

Scene Poly-count BVH construction time

Cornell Box 37 2.625 milliseconds

Blender Suzanne 507 2.754 milliseconds

Stanford Bunny 69,458 16.387 milliseconds

Table 3: BVH construction time comparison across scenes

For those scenes with a higher poly-count (>200 primitives), a BVH comes al-

most essential to scale with the number of triangles. This is show cased in the case

of the Stanford Bunny in Table 2. As poly counts increase, runtime approximately

logarithmically increase with a BVH. But without, it linearly increase.

Comparing build times in Table 3, for the raytracing time gained, these build

times are great. There’s likely a bottle neck in the pipeline of shaders causing the

BVH construction time to increase in the case of the Stanford Bunny. While the

shaders generating the morton codes, constructing the BVH, and construct BVH

bounding boxes are setup to use as big a work group as they need, the radix sort

and enclosing AABB shaders only operate with a single work group.

6 Conclusion

In implementing a BVH on the GPU, the GPU based raytracer was vastly im-

proved quantitatively and algorithmically such that it yields superior frame gen-

eration times than previously. However, it’s still a far cry from being real-time

viable. Fortunately, many aspects of the raytracer, including the current BVH,

can be improved to likely yield better performance. These include more accurate

techniques for estimating the rendering equation, such as adding a BRDF and

doing importance or multiple importance sampling, all of which will require few

rays to be fired to get improved color quality. Others include better randomization

35

techniques and better ray generation and pipeline management. Currently 1 ray is

fired from every pixel at a time and the shader doesn’t begin the next round until

all have finished their path. This can lead to varying degrees of GPU utilization.

In that same vein, the pipeline currently doesn’t use a swapchain to it’s full extent,

which can also yield performance gains. There are many improvements still to be

made to bring this project closer to real-time application.

References

[1] Dmitri I. Arkhipov et al. Sorting with GPUs: A Survey. 2017. arXiv: 1709.

02520 [cs.DC]. url: https://arxiv.org/abs/1709.02520.

[2] Pablo Bauszat, Martin Eisemann, and Marcus Magnor. “The Minimal Bound-

ing Volume Hierarchy”. In: Proceedings of the Vision, Modeling, and Visu-

alization Workshop. Jan. 2010, pp. 227–234. doi: 10.2312/PE/VMV/VMV10/

227-234.

[3] Jiří Bittner, Michal Hapala, and Vlastimil Havran. “Fast Insertion-Based

Optimization of Bounding Volume Hierarchies”. In: Computer Graphics Fo-

rum 32 (1 2013), pp. 85–100. doi: 10.1111/cgf.12000.

[4] Jiří Bittner and Vlastimil Havran. “RDH: ray distribution heuristics for

construction of spatial data structures”. In: Proceedings of the 25th Spring

Conference on Computer Graphics. SCCG ’09. Budmerice, Slovakia: Associ-

ation for Computing Machinery, 2009, pp. 51–58. isbn: 9781450307697. doi:

10.1145/1980462.1980475. url: https://doi.org/10.1145/1980462.

1980475.

[5] Bartosz Fabianowski, Colin Fowler, and John Dingliana. “A Cost Metric for

Scene-Interior Ray Origins”. In: Eurographics 2009 - Short Papers. Ed. by P.

Alliez and M. Magnor. The Eurographics Association, 2009. doi: 10.2312/

egs.20091046.

[6] K. Garanzha and C. Loop. “Fast ray sorting and breadth-first packet traver-

sal for GPU ray tracing”. In: Computer Graphics Forum 29 (2 2010), pp. 289–

298. doi: 10.1111/j.1467-8659.2009.01598.x.

36

[7] Xiaozi Guo, Juan Zhang, and Mingquan Zhou. “Fast Parallel Bounding Vol-

ume Hierarchy Construction”. In: 2020 Asia-Pacific Conference on Image

Processing, Electronics and Computers (IPEC). 2020, pp. 121–124. doi:

10.1109/IPEC49694.2020.9115145.

[8] Vlastimil Havran and Jiří Bittner. “Rectilinear BSP Trees For Preferred

Ray Sets”. In: 2001. url: https://api.semanticscholar.org/CorpusID:

18251601.

[9] J.T. Kajiya. “The Rendering Equation”. In: Proceedings of the 13th annual

conference on Computer graphics and interactive techniques (1986). doi:

10.1145/15922.15902.

[10] Brian Karis and Jerome Platteaux. Unreal Engine 5 Revealed! | Next-Gen

Real-Time Demo Running on PlayStation 5. Unreal. 2020. url: https:

//www.youtube.com/watch?v=qC5KtatMcUw.

[11] Tero Karras. “Maximizing parallelism in the construction of BVHs, octrees,

and k-d trees”. In: Proceedings of the Fourth ACM SIGGRAPH / Euro-

graphics Conference on High-Performance Graphics. EGGH-HPG’12. Paris,

France: Eurographics Association, 2012, pp. 33–37. isbn: 9783905674415.

[12] Athos van Kralingen. “Assessing Alternatives to the Surface Area Heuristic

for Bounding Volume Hierarchy Construction”. MA thesis. Utrecht Univer-

sity, July 2023. doi: 20.500.12932/46026.

[13] C. Lauterbach et al. “Fast BVH Construction on GPUs”. In: Computer

Graphics Forum 28.2 (2009), pp. 375–384. doi: 10.1111/j.1467-8659.

2009 . 01377 . x. url: https : / / wwwx . cs . unc . edu / ~geom / papers /

documents/articles/2009/lauterbach09.pdf.

[14] Tobias Maltenberger et al. “Evaluating Multi-GPU Sorting with Modern In-

terconnects”. In: Proceedings of the 2022 International Conference on Man-

agement of Data. SIGMOD ’22. Philadelphia, PA, USA: Association for

Computing Machinery, 2022, pp. 1795–1809. isbn: 9781450392495. doi: 10.

1145/3514221.3517842. url: https://doi.org/10.1145/3514221.

3517842.

37

[15] Daniel Meister et al. “On Ray Reordering Techniques for Faster GPU Ray

Tracing”. In: Symposium on Interactive 3D Graphics and Games. I3D ’20.

San Francisco, CA, USA: Association for Computing Machinery, 2020. isbn:

9781450375894. doi: 10.1145/3384382.3384534. url: https://doi.org/

10.1145/3384382.3384534.

[16] J. Pantaleoni and D. Luebke. “HLBVH: hierarchical LBVH construction for

real-time ray tracing of dynamic geometry”. In: Proceedings of the Confer-

ence on High Performance Graphics. HPG ’10. Saarbrucken, Germany: Eu-

rographics Association, 2010, pp. 87–95. doi: 10.5555/1921479.1921493.

[17] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Tech-

niques for High-Performance Graphics and General-Purpose Computation

(Gpu Gems). Addison-Wesley Professional, 2005. isbn: 0321335597. doi:

10.5555/1062395.

[18] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Render-

ing, fourth edition: From Theory to Implementation. The MIT Press, 2023.

[19] Peter Shirley, Trevor D Black, and Steve Hollasch. Ray Tracing in One

Weekend. 4.0.1. 2024.

[20] Peter Shirley, Trevor D Black, and Steve Hollasch. Ray Tracing: The Next

Week. 4.0.1. 2024.

[21] Peter Shirley, Trevor D Black, and Steve Hollasch. Ray Tracing: The Rest

of Your Life. 4.0.1. 2024.

[22] Marek Vinkler, Vlastimil Havran, and Jiří Sochor. “Visibility driven BVH

build up algorithm for ray tracing”. In: Computers Graphics 36.4 (2012).

Applications of Geometry Processing, pp. 283–296. issn: 0097-8493. doi:

https://doi.org/10.1016/j.cag.2012.02.013. url: https://www.

sciencedirect.com/science/article/pii/S0097849312000362.

[23] Ingo Wald. “On fast Construction of SAH-based Bounding Volume Hierar-

chies”. In: 2007 IEEE Symposium on Interactive Ray Tracing. 2007, pp. 33–

40. doi: 10.1109/RT.2007.4342588.

38

[24] Sascha Willems. Vulkan tutorial on rendering a fullscreen quad without buffers.

2016. url: https://www.saschawillems.de/blog/2016/08/13/vulkan-

tutorial-on-rendering-a-fullscreen-quad-without-buffers/ (vis-

ited on 06/12/2023).

39

